
RDMA Programming

Course Description: The goal of this programming course is to provide developers with the knowledge and

experience they need to be able to implement parallel programming using Remote Direct Memory Access

(RDMA) verbs for reliable connections (RC). The course provides the following materials to the developers to

help them rapidly understand and create kernel modules that utilize RDMA kernel verbs. The modules will be

usable over any RDMA transport such as InfiniBand (IB), iWARP, RoCE or RoCEv2.

1) Diagrams to illustrate the overall RDMA architecture, transports & protocols and protocol layers.

2) Hundreds of slides in PDF format which explain all of the critical concepts and how to implement them.

3) Many example programs which illustrate all the concepts being presented in the slides. These examples can

be used as fully functional modules to develop and implement your company’s projects.

The example programs are structured so that developers learn to update and expand them to solve various

problems being discussed in the RDMA training session.

Course pre-requisites

1) Knowledge of C and Linux programming

2) Knowledge of kernel modules

3) User-level programming course

The following are some of the topics discussed in the course:

1) RDMA Overview

a) Definitions and benefits

b) Transport Services

c) Transport Semantics

d) RDMA verbs and various APIs

2) RDMA Transports and Protocols

a) An explanation of the various RDMA stacks and protocols

3) Kernel Module

a) What it is

b) Components of a module

c) Functions a module needs

d) Building a module

e) Loading/unloading a module

f) The module file system

g) Module dependencies, and building a module with dependencies

h) Interfacing with a module

i) /proc filesystem and how it relates to modules

4) Kernel RDMA Verbs

a) Accessing standard objects

b) Error reporting conventions

c) Client-server model

i) How client, client-listener, server-agent operate and how they differ

d) Kernel space verbs vs user space verbs

e) Protection domains

f) Completion queues

g) Queue pairs

h) Transferring messages

i) Posting send work requests

j) Getting send work completions

k) Posting receive work requests

l) Getting receive work completions

m) Explanation of why receives must be posted before sends

n) Work queues

o) Read/Write API

Protocol Layers

Architectural Overview

